

Grupo CASTEM

El grupo CASTEM es una compañía global dedicada a la manufactura de alta precisión a través de los procesos de fundición por cera perdida (Investment Casting) e inyección de metal (Metal Injection Molding MIM). Nuestro objetivo es ser en el mejor aliado de nuestros clientes, ofreciendo el mejor valor agregado en calidad, precio, tiempos de entrega y tecnología.

Casa Matriz, CASTEM Co., Ltd. Ciudad de Fukuyama, Hiroshima, Japón.
CASTEM Filipinas Co., CASTEM Tailandia Co.,Ltd. CASTEM Siam Co.,Ltd. CASTEM HOUSTON, LLC. CASTEM COLOMBIA S.A.S.

CASTEM Colombia

FUNDICIÓN POR CERA PERDIDA "Creado por CASTEM, desarrollando Colombia."

Este es un método de manufactura ancestral comúnmente usado para la elaboración de joyería y piezas artísticas.

Hoy en día es un proceso industrializado altamente usado para la fabricación de piezas de alta complejidad geométrica. CASTEM Colombia le ofrece a sus clientes la posibilidad de consolidar ensambles, reducir peso y eliminar mecanizados en la fabricación en serie de sus piezas.

Nuestras Capacidades

a. Materiales: Aceros y aleaciones de aluminio y cobre. b.Tamaño:

MATERIAL	Min (kg)	Max (kg)
Aceros / Aleaciones a base Cu	0,05	12
Aleaciones a base AL	0,1	7
Volúmenes de hasta 3L por pieza		-

Desde (mm)	Hasta (mm)	Tolerancia (mm)
-	10	0,15
10	25	0,25
25	50	0,40
50	75	0,60
75	100	1,00
100	125	1,30
125	-	1,5%
Áng	1,5⁰	

Capacidad en Productividad:

a. Masa: 1.5MT/Día 30% aceros.
b. Piezas por día: 800 PCS en promedio, depende del tamaño de la pieza.

Control y Aseguramiento de Calidad

- Control del proceso a través de la metodología SPC (Statistical Process Control), en cada una de las áreas productivas.
- 2. Inspección de producto en cada etapa de proceso.
- Certificado de composición de cada material a través de análisis de espectrometría.
- 4. Inspección dimensional de producto por muestreo de lote.
- 5. Otros ensayos disponibles: Dureza y Metalografía.

Aleaciones Ofrecidas

ACEROS

Clasificación	Estándar JIS (Estándar AISI¹)		Comp	Tratamiento Térmico	Esfuerzo de	Dureza				
		С	Si	Mn	Ni	Cr	Мо		Tensión (N/mm2)	
Acero al	l		0.2 - 0.8	0.3 - 0.6				R	>360	HRB85
carbono y de baja aleación	S45C (AISI 1045)	0.42 - 0.48	0.30 - 0.80	0.60 - 0.90				R	>530	HRB94
	S55C	0.52 - 0.58	0.30 - 0.80	0.60 - 0.90				R	>530	HRB94
	SCM415	0.13- 0.18	0.2 - 0.8	0.6 - 0.85		0.9 - 1.2	0.15 - 0.3	R	>600	HRB90
	SCM435 (AISI 4135)	0.33- 0.38	0.3 - 0.8	0.6 - 0.85		0.9 - 1.2	0.15 - 0.3	Т	>980	HRC30
	SCM440 (AISI4140)	0.38 -0.43	0.3 - 0.8	0.6 - 0.85		0.9 - 1.2	0.15 - 0.3	T	>1070	HRC33

Solo referencia, no son totalmente equivalentes.

Clasificación	Estándar JIS (Estándar AISI ¹)		,	Compos	ición Q	uímica	Tratamiento Térmico	Esfuerzo de	Dureza	
		С	Si	Mn	Ni	Cr	Мо		Tensión (N/mm2)	
	SNCM220 (AISI 8620)	0.17- 0.23	0.2 - 0.8	0.9 - 0.9	0.4 - 0.7	0.4 - 0.65	0.15 - 0.3	R	>800	HRB90
-	SNC415	0.12- 0.18	0.2 - 0.8	0.3 - 0.7	2 - 2.5	0.2 - 0.5		R		HRB90
Acero de	SUJ2 (AISI52100)	0.9 - 1.1	0.35 - 0.8	< 0.5		1.3 - 1.6		R		HRC25
herramientas	SKH51	0.8 - 0.9	<0.6	<0.6		3.8 - 4.5	4.4 - 5.5	Т		HRC62
	SKD I I	1.4 - 1.6	< 0.4	< 0.6		0.8 -				
Aceros Inoxidables	SUS303 (AISI 303)	< 0.15	< 2.00	< 2.00	8 - 10	17 - 19		S	>440	HRB90
y de alta temperatura	SUS304 (AISI 304)	< 0.08	< 2.00	< 2.00	8 - 11	18 - 21		S	>440	HRB90
	SUS316 (AISI 316)	< 0.08	< 1.5	< 2.00	10 - 14	17 - 20	2 - 3	S	>440	HRB90
	SUS420J2 (AISI 420)	0.26 - 0.4	<	<	<0.6	12 -		R	>520	
	SCH13(AISI 309)	0.2 - 0.5	<2	<2	11 - 14	24 - 28		N/A	>490	
	SCH22 (AISI 314)		<1.7 5	<1.5	19 - 22	23 - 27		N/A	>490	

ALEACIONES BASE COBRE

Estándar JIS	Cu	Sn	Pb	Zn	Fe	Ni	Р	Al	Mn
CAC 101	99.5	<0.4					<0.07		
CAC 102	99.7	<0.2					<0.07		
CAC502A	87 - 91	9 - 12	<0.3	<0.3	<0.2	<	0.05-0.2	<0.01	
CAC703	78-85	<0.1	<0.1	<0.5	3 - 6	3 - 6		8.5-10.5	0.1 - 1.5

ALEACIONES BASE ALUMINIO

Estándar					С	omposi	ición Q	uímic	a				Tratamiento	Esfuerzo _ de	Dureza
JIS	Si	Fe	Си	Mn	Mg	Zn	Ni	Ti	Pb	Sn	Cr	Al	Térmico	Tensión (N/mm2)	
AC4A	8 10	< 0.55	< 0.25	0.3- 0.6	0.3- 0.6	0.25	< 0.1	< 0.2	<0.1	< 0.05	< 0.15	Restante	T6	>220	HB 80
AC4C	6.5 - 7.5	< 0.55	< 0.25	< 0.35	0.25- 0.45	< 0.35	< 0.10	< 0.2	<0.1	< 0.05	< 0.10	Restante	T6	200	HB75
AC7A	< 0.2	< 0.30	< 0.1	< 0.6	3.5 - 5.5	< 0.15	< 0.05	< 0.2	<0.05	< 0.05	0.15	Restante	N/A	>140	HB50